베이즈 정리: Difference between revisions
From CS Wiki
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
* 사전(prior) 확률과 사후(posterior) 확률 사이의 관계를 조건부 확률을 이용해서 계산하는 확률 이론 | * 사전(prior) 확률과 사후(posterior) 확률 사이의 관계를 조건부 확률을 이용해서 계산하는 확률 이론 | ||
P(A|B) = P(A)P(B|A)/P(B) = P(A∩B)/P(B) | ;P(A|B) = P(A)P(B|A)/P(B) = P(A∩B)/P(B) | ||
* P(A): '''사전확률''', A일 확률 | * P(A): '''사전확률''', A일 확률 | ||
* P(B|A): '''조건부 확률''', 사건 A로 인해 B가 일어날 확률 | * P(B|A): '''조건부 확률''', 사건 A로 인해 B가 일어날 확률 |
Revision as of 22:15, 2 December 2019
- Bayes' theorem
- 사건 A와 B가 있을 때 B가 일어날 것을 전제로 한 A의 조건부 확률 P(A|B)
- 사전(prior) 확률과 사후(posterior) 확률 사이의 관계를 조건부 확률을 이용해서 계산하는 확률 이론
- P(A|B) = P(A)P(B|A)/P(B) = P(A∩B)/P(B)
- P(A): 사전확률, A일 확률
- P(B|A): 조건부 확률, 사건 A로 인해 B가 일어날 확률
- P(A|B): 사후확률, 사건 B로 인하여 A가 일어날 확률
- P(B): B가 일어날 확률
- = P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3) + ... + P(An)P(B|An)
활용
- 실제생활에서는 사후 확률만 알고 있는 경우가 많음
- 사전 확률과 사휴 확률 사이의 관계를 조건부 확률을 이용해서 계산하는 확률 이론
예제
예제 문제1
- 누군가가 유방조영술을 받았는데 결과가 양성이었다.
- 유방암 환자가 유방조영술이 양성일 확률은 90%이다.
- 유방암이 아니더라도 유방조영술이 양성일 확률은 7%이다.
- 40~50대에 유방암일 확률이 0.8%이다.
- 유방조영술 양성자가 유방암일 경우는?
예제 풀이
- 유방암에 걸릴 확률(사전 확률) P(A) = 0.8%
- 검사 결과가 양성일 확률 P(B) = 0.8%의 90% + 99.2%의 7%
- = 0.008 * 0.9 + 0.992 * 0.07 = 0.0766 = 7.7%
- 유방암일 때 검사결과가 양성일 확률(조건부 확률) P(B|A) = 90%
- 검사 결과가 양성일 때 유방암에 걸렸을 확률(사후 확률) P(A|B) = 0.8% * 90% / 7.7%
- = 0.008 * 0.9 / 0.077 = 0.0935 = 9.4%